skip to main content


Search for: All records

Creators/Authors contains: "Varshney, Kush"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 26, 2024
  2. Abstract

    Images depicting dark skin tones are significantly underrepresented in the educational materials used to teach primary care physicians and dermatologists to recognize skin diseases. This could contribute to disparities in skin disease diagnosis across different racial groups. Previously, domain experts have manually assessed textbooks to estimate the diversity in skin images. Manual assessment does not scale to many educational materials and introduces human errors. To automate this process, we present the Skin Tone Analysis for Representation in EDucational materials (STAR-ED) framework, which assesses skin tone representation in medical education materials using machine learning. Given a document (e.g., a textbook in .pdf), STAR-ED applies content parsing to extract text, images, and table entities in a structured format. Next, it identifies images containing skin, segments the skin-containing portions of those images, and estimates the skin tone using machine learning. STAR-ED was developed using the Fitzpatrick17k dataset. We then externally tested STAR-ED on four commonly used medical textbooks. Results show strong performance in detecting skin images (0.96 ± 0.02 AUROC and 0.90 ± 0.06 F1score) and classifying skin tones (0.87 ± 0.01 AUROC and 0.91 ± 0.00 F1score). STAR-ED quantifies the imbalanced representation of skin tones in four medical textbooks: brown and black skin tones (Fitzpatrick V-VI) images constitute only 10.5% of all skin images. We envision this technology as a tool for medical educators, publishers, and practitioners to assess skin tone diversity in their educational materials.

     
    more » « less
  3. Pre-trained language models induce dense entity representations that offer strong performance on entity-centric NLP tasks, but such representations are not immediately interpretable. This can be a barrier to model uptake in important domains such as biomedicine.There has been recent work on general interpretable representation learning (Onoe and Durrett, 2020), but these domain-agnostic representations do not readily transfer to the important domain of biomedicine. In this paper, we create a new entity type system and train-ing set from a large corpus of biomedical texts by mapping entities to concepts in a medical ontology, and from these to Wikipedia pages whose categories are our types. From this map-ping we deriveBiomedical Interpretable Entity Representations(BIERs), in which dimensions correspond to fine-grained entity types, and values are predicted probabilities that a given entity is of the corresponding type. We propose a novel method that exploits BIER’s final sparse and intermediate dense representations to facilitate model and entity type debugging. We show that BIERs achieve strong performance in biomedical tasks including named entity disambiguation and entity linking, and we provide error analysis to highlight the utility of their interpretability, particularly in low-supervision settings. Finally, we provide our induced 68K biomedical type system, the corresponding 37 million triples of derived data used to train BIER models and our best per-forming model. 
    more » « less
  4. Current methods for viral discovery target evolutionarily conserved proteins that accurately identify virus families but remain unable to distinguish the zoonotic potential of newly discovered viruses. Here, we apply an attention-enhanced longshort- term memory (LSTM) deep neural net classifier to a highly conserved viral protein target to predict zoonotic potential across betacoronaviruses. The classifier performs with a 94% accuracy. Analysis and visualization of attention at the sequence and structure-level features indicate possible association between important protein-protein interactions governing viral replication in zoonotic betacoronaviruses and zoonotic transmission. 
    more » « less
  5. Recommendation for e-commerce with a mix of durable and nondurable goods has characteristics that distinguish it from the well-studied media recommendation problem. The demand for items is a combined effect of form utility and time utility, i.e., a product must both be intrinsically appealing to a consumer and the time must be right for purchase. In particular for durable goods, time utility is a function of inter-purchase duration within product category because consumers are unlikely to purchase two items in the same category in close temporal succession. Moreover, purchase data, in contrast to rating data, is implicit with non-purchases not necessarily indicating dislike. Together, these issues give rise to the positive-unlabeled demand-aware recommendation problem that we pose via joint low-rank tensor completion and product category inter-purchase duration vector estimation. We further relax this problem and propose a highly scalable alternating minimization approach with which we can solve problems with millions of users and millions of items in a single thread. We also show superior prediction accuracies on multiple real-world datasets. 
    more » « less